TP.5 – La cellule assure des fonctions apparues au cours de l'évolution

La nature du vivant

A. Les métabolismes influencent l'environnement.

Seront évaluées les capacités, à expliquer le fonctionnement de l'indicateur coloré dans le protocole utilisé pour mettre en évidence de différents métabolismes.

1. Introduction : les propriétés du Rouge de Crésol.

Le rouge de Crésol est un colorant indicateur de pH. Il change de couleur en fonction du pH du milieu.

2. Utilisation du Rouge de Crésol pour montrer les échanges de dioxyde de carbone

- Prendre un tube T1 contenant du rouge de Crésol dilué présentant une couleur rose au contact de l'air ambiant.
 - Dans un premier temps, expirer dans le tube (résultat en T2), observer.

- Dans un deuxième temps, suspendre une pastille d'hydroxyde de potassium et observer après quelques minutes (résultat en T3)

3. Les échanges liés à des phénomènes biologiques

Seront évaluées les capacités, à analyser et interpréter les résultats expérimentaux.

a) Exemple de la partie chlorophyllienne d'une plante

On place une feuille de plante verte dans les tubes TF2 et TF3. TF2 est placé à la lumière alors que TF3 est \succ placé à l'obscurité. TF1 est présent en double exemplaire, un à la lumière l'autre à l'obscurité.

M Compléter les schémas en ajoutant les couleurs.

>>>> Utilisez les changements de couleur du Rouge de Crésol pour énoncer ce que prouve cette expérience. _____ **TF 1** TF 2 TF 3 M Quels sont les phénomènes biologiques mis en jeu ? Définir le mode de vie de l'organisme. M Comment ce mécanisme agit-il sur l'environnement ? On fait varier l'intensité de Bilan en CO. l'éclairement et l'on dose précisément la teneur en CO₂. On obtient le

▶ Sur ce document. coloriez en rouge les domaines du graphique pour lesquels le rouge crésol est « rouge » et en jaune, ceux pour lesquels il est « jaune ».

graphique ci-contre.

- b) <u>Exemple de la partie non chlorophyllienne d'une plante</u>
- On place un fragment de racine de carotte dans les tubes TC2 et TC3. TC2 est placé à la lumière alors que TC3 est placé à l'obscurité. TC1 est présent en double exemplaire, un à la lumière l'autre à l'obscurité.

 Compléter les schémas en ajoutant les couleurs. Utilisez les changements de couleur du Rouge de Crésol pour énoncer ce que prouve cette expérience. 			
	TC 1	TC 2	TC 3
M Quel est le phénomène biologique mis en jeu ? Défini	r le mode d	e vie de l'organisme.	
M Comment ce mécanisme agit-il sur l'environnement	?		
	5:		

Les végétaux chlorophylliens stockent le carbone.

Seuls les végétaux non-chlorophylliens respirent.

Les plantes vertes consomment du dioxyde de carbone à la lumière.

 \square Le bilan CO₂ consommé / CO₂ rejeté est supérieur à 1, le jour pour les plantes vertes.

Les plantes vertes ne respirent que la nuit.

B. La cellule, indice de parenté entre les êtres vivants

Seront évaluées les capacités, à utiliser les informations contenues dans un document et à utiliser Phylogene, logiciel de mise en évidence des parentés.

1. Procaryotes et eucaryotes (se reporter au document distribué)

M Définir ce qui différencie une cellule procaryote d'une cellule eucaryote.

MÀ l'aide du bilan du TP.4, lister les différences entre les cellules eucaryotes animales et végétales.

2. Établir des liens de parenté à partir de la structure des cellules

On utilisera les fonctions du logiciel gratuit Phylogene.

- 1. Ouvrir le logiciel « Dans le menu déroulant configurations, choisir « Seconde » et dans le menu Collections choisir « Collège ».
- 2. Dans le menu déroulant au bas de la page choisir « Unité du vivant »
- 3. Choisir le menu « Construire » (un tableau). « Sélectionner la liste suivante d'êtres vivants : Bactérie, Criquet, Fougères, Homme, Mousses. « Puis sélectionner les caractères : Cellules, Chlorophylle, Chromosomes en bâtonnets, Duplication de l'ADN, Enveloppe nucléaire, Organites cellulaires.
- 4. Compléter le tableau par un clic dans chaque cellule du tableau afin de choisir la bonne réponse parmi les réponses proposées. « Lorsque le tableau est complété, cliquer le bouton Vérifier (corriger les erreurs si nécessaires).
- 5. Choisir le menu Classer. « Cliquer sur l'icône au milieu de la fenêtre vide. « Cliquer sur les caractères (en-têtes des colonnes). Ils s 'affichent dans la fenêtre supérieure sous forme de boîtes. « Faire glisser les boîtes pour permettre un classement. « Recopier les boîtes emboîtées dans la case de gauche ci-dessous.
- 6. Choisir le menu « Établir des parentés ». « Répondre affirmativement au transfert de données. « Clique sur les caractères (en-têtes de colonnes, un arbre des parentés s'affiche dans la fenêtre de droite. « Choisir « Afficher les boites puis choisir « Afficher les noms des groupes ». « Cliquer sur l'embranchement (carré jaune à la base de chaque embranchement) et choisir le nom du groupe. « Recopier l'arbre de parenté obtenu dans la case de droite.

M D'après les informations tirées de cet arbre des parentés, qu'est-ce qui caractérise l'ancêtre commun à tous les êtres vivants ?
